

Cognitive impact of chronic low-level carbon monoxide exposure in older adults

Beth Cheshire, Prof Trevor Crawford & Prof Carol Holland

Low-level CO Exposure

Evidence on the effects associated with low-level exposure is limited and inconsistent

Acute low-level CO exposure (duration 24 hours)

Experimental studies:

• COHb levels of around 5% associated with impaired cognitive function

Chronic low-level CO exposure (duration >24 hours)

Case reports:

- Headache and nausea
- Affective disorders
- Memory impairments and motor slowing (Myers et al., 1998).

Epidemiological studies:

- Associations between air pollution and increased risk of stroke, MI and heart failure
- CO exposure and increased dementia development risk (Changet al., 2014).

Neuropsychological deficits may present following less severe exposures

May be persistent in nature.

McFarland et al., 1972

High Risk groups

Poisoning severity depends on human and environmental factors:

- Duration of exposure
- Concentration of CO in the air
- Pre-existing disease

Older adults may be:

 More <u>susceptible</u> to the effects of CO Reduced physiological reserve

- Frequently associated with gas appliances
- Particular concern in the UK as gas appliances are widely used for heating and cooking

A percentage of the population may be at risk from low-level CO exposure

- At levels above those considered safe
- •

Aims and Method

Fire officers report high levels of confusion in older residents

• Low-level exposures may be an unidentified cause of cognitive impairment

Aims:

- Examine the proportion of older adult homes in Coventry with low-level CO
- Examine the effects of chronic low-level CO exposure on cognitive function

A sample of 106 older adults (M=75.60 yrs) residing in Coventry were recruited

- Home CO monitoring 1 month
- Neuropsychological assessment
- Follow-up CO monitoring and assessments at 7 months
- Examine longer term impact

Figure 1. CO levels over 1-month showing continuous extremely low CO levels. Gas fire and boiler

Figure 2. CO levels over 1-month showing higher short

Discussion: Cross-sectional

Endogenous CO production:

- Results from the degradation of haem catalysed by haem oxygenase
- Biliverdin, free iron and CO

- Involved in various cellular functions including vasodilation and proliferation
- Plays a crucial role in cellular maintenance, protection, regeneration and survival

These physiological processes may also result from low-levels of inhaled CO:

- Potentially minimise risk to the central nervous system
- Playing a protective or even beneficial role up to a certain dose and duration

Discussion: Cross-sectional

For example:

• Endogenous CO

Discussion: Cross-sectional

Cardiovascular risk factors:

Heart failure, coronary artery disease and atrial fibrillation are more common in older adults

- Lead to greater decreases in CBF and chronic hypo-perfusion
- Further compromising the already reduced CBF that is present in ageing

The effects of these age and disease-related vascular changes on CBF have been associated with:

• Increased risk of cognitive decline, MCI and dementia development

The potential protective effects of low-level exogenous CO may be of particular benefit to older adults

<u>**However**</u> any protective effects are likely to be:

- Transient with COHb accumulation over time placing stress on the body's physiological resources
- Reaches a point where the body can no longer compensate for the continuous uptake of CO
- Insufficient CBF and ischaemia may follow
- Resulting in a shift from positive to negative cognitive impacts.

Examined the longer-term impact of exposure on cognitive function

- Determine whether the observed beneficial effects are short lasting and result in damage given sufficient exposure time/ time post-exposure
- 78 participants completed the follow-up at 7 months

Similar proportion of homes with some CO readings: 47/78 (60%)

Longer-term impact from T1 exposure on performance at 7 months Cognitive performance <u>decreased</u> with greater CO exposure

- Processing speed
- Intra-individual variability in responding
- Selective attention, resistance to distractor interference

Overall Results

Relatively consistent pattern of results:

• Positive CO-related effects observed across a range of functions in the short-term following exposure

However, the majority of these effects were short-lasting and <u>lead to longer-term negative impacts</u> either:

- Given sufficient time post-exposure (negative impacts from T1 exposure present at 7 months)
- Accumulation of two one-month exposure periods (total exposure)

This shift of effects was observed across a range of functions:

- Selective attention and resistance to distractor interference
- Memory recognition
- Auditory working memory
- Processing speed

Overall Results

Particular cognitive areas appear to be more resilient to CO exposure associated with positive effects only:

- Visual working memory
- Surrently unclear whether these positive effects are followed by negative impacts
- Likely that negative impacts do follow at levels above those reported

The results indicate that the effects of chronic low-level CO exposure may be viewed on a continuum:

Overall Discussion

Thank you for listening

Acknowledgements

Watch Commanders Adrian Hutt & Brinley Mills West Midlands Fire Service (WMFS)

Project funded by the CO Research Trust